©COME=1
 SAFETY DEVICES

Safety Limit Switches with separate actuator page 2

Electromagnetic Safety Devices with separate actuator paye 10

Safety Handles page 24

Safety Hinges page 28

Hinge mount Safety Limit Switches nage 34

Safety Maynetic Sensors paye 40

Safety Modules page 46

Safety Limit Switches with rope page 50

Safety Limit Switches with reset page 60

Safety Limit Switches with separate actuator

Safety Limit Switches with separate actuator－Description

Applications

Easy to use，the limit switches with small latch（key）offer specific qualities：
－Capability for strong current switching（conventional thermal current 10 A ）．
－Opening guaranteed of the＂N．C．＂contact（s）when the small latch is withdrawn from the limit switch．
－Contact blocks with dependent action and positive opening operation of the＂N．C．＂normally closed contact（s）（symbol Θ ）．
－Electrically separated contacts．
－Precision on operation positions（consistency）．
－Immunity to electromagnetic disturbances．
These specific features make the limit switches ideal for monitoring and protection of industrial machines without inertia in which downtime is less than access time to the dangerous area．Use on sliding or pivoting protectors（covers，cases，doors，grids，etc．）．
－They contribute to protection of operators working on dangerous machines，by opening the control circuit．Withdrawal of the small latch（key）by opening the mobile protector causes immediate stopping of the machine drive．
－They comply with the requirements of European Directives（Low Voltage and Machines Directive）and are conform to European and international standards．

Description

Safety limit switches with small latch（key）of SP／SDP／SBP／SFP series are made of fibre－glass reinforced UL－V0 thermoplastic material，and they offer double insulation and a degree of protection IP65．Safety limit switches of SM／SDM series are made of zinc alloy（zamack）and have a degree of protection IP66．Safety limit switches SBM／SCM are realized in aluminium material and have a degree of protection IP66．
All models are equipped with $1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NC}, 1 \mathrm{NO}+2 \mathrm{NC}, 2 \mathrm{NO}+1 \mathrm{NC}$ or 3 NC contact blocks with positive opening operation of the＂N．C．＂contact（s）．

Casing
－SP／SM with standardized dimensions acc．to EN 50047 －SBP／SBM width with standardized dimensions acc．to EN 50041

Mounting the casing

－ 2 x M4 screws on top part for SP／SM series
－ 2 or $4 \times$ M4 screws on top part for SBP／SDM series
－ 2 or $4 \times$ M5 screws for SBP／SBM series
－ 2 x M5 screws on top part for SFP／SCM series

Contact Block：

－Positive opening operation
－Snap action or slow action
－Contacts are electrically separated

Connecting terminals：
 －Block of 2 contacts：M3．5（＋，－）pozidriv 2 screw
 －Block of 3 contacts：M3（,+- ）screw
 －Screw head with captive cable clamp
 －Markings conform with IEC 60947－1，IEC 60947－5－1 standard

A variety of operating inox keys：
－Flat／Bent
－Shock absorbing
－Adjustable

Operating head
－Fully turnable head is available for
SP／SDP／SM／SDM series

Cover：

－ 1 screw for SP／SDP series
－ 2 screws for SFP／SBM series
－ 3 screws for SM series
－ 4 screws for SDM／SCM series

Electrical connection：
－ 1 x cable gland for SP／SM／SBP／SBM series
－ $2 x$ cable gland for SDP series
－ $3 x$ cable gland for SFP／SDM／SCM series

Contact block

11： $1 \mathrm{NO}+1 \mathrm{NC}$ contacts
02： 2 NC contacts
12P： 1 N $0+2$ NC contacts
21P： $2 \mathrm{NO}+1 \mathrm{NC}$ contacts
03P： 3 NC contacts
Only for SBM，SCM，SBP series：
12： $1 \mathrm{NO}+2 \mathrm{NC}$ contacts
21： $2 \mathrm{NO}+1$ NC contacts
03： 3 NC contacts

Z：Snap action

W：Slow action（contact dependent）
X：Slow action non－overlapping late make
Y：Slow action overlapping early make

Safety Limit Switches with separate actuator－Technical Data

AC－15－Snap action

AC－15－Slow action

DC－13	Snap action	Slow action	
		Power breaking for a durability of 5 million operating cycles	
Voltage	24 V	9.5 W	12 W
Voltage	48 V	6.8 W	9 W
Voltage	110 V	3.6 W	6 W

Safety Limit Switches with separate actuator－Technical Data

Technical data approved by IMQ

Standards	Devices conform with international IEC 60947－5－1 and European EN 60947－5－1 standards
Degree of protection	IP 65 （SP／SDP／SBP series）， IP 66 （SM／SDM／SBM／SCM series）
Rated insulation voltage $\mathrm{U}_{\mathbf{i}}$	500 V （degree of pollution 3）
	（400 V for contacts type Z02，X12P，X21P，W03P）
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	6 kV
Conventional free air thermal current $\mathrm{I}_{\text {th }}$	10 A
Short－circuit protection－ $\mathrm{gG}(\mathrm{gl})$ type fuses	10 A
Rated operational current	
$\mathbf{I}_{\mathbf{e}} / \mathrm{AC}-15 \quad 24 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	10 A
$400 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	4 A （1．8A for contacts type X12，X21，W03）
$\underline{\mathbf{l} / \mathrm{DC}-13} 24 \mathrm{~V}$－d．c．	$6 \mathrm{~A}(2.8 \mathrm{~A}$ for contacts type X12，X21，W03）
125 V －d．c．	0，55 A
250 V －d．c．	0.4 A （0．27A for contacts type X12，X21，W03）

Technical data approved by UL

Standards	Devices conform with UL 508
Contact blocks type Z11，X11，Y11，W02 and Z02	
Utilization categories	A600，Q600
	（A300，Q300 when installed in SM／SDM series）
Contact blocks type X12，X21，W03	
Utilization categories	A600，Q600
Contact blocks type X12P，X21P and W03P	
Utilization categories	A300，Q300
Use $60 / 75^{\circ} \mathrm{C}$ copper（Cu） ening torque of 7 lbs －in／ tionally provided or recom	es 14－18 AWG stranded or solid．The terminal tight－ onduit connection only with use of adapter sleeve op－ cturer．

Implementation

SP／SDP

Electrical connection： Replace the symbol＂•＂with the number of the thread desired 1：Cable gland PG 13.5
2：Cable gland $1 / 2^{\prime \prime}$ NPT （with adapter）
3：Cable gland PG 11
4：Cable gland M16 x 1，5
5：Cable gland M20 $\times 1,5$
6：M12 4 poles connector
7：M12 5 poles connector
8：M12 8 poles connector
Operating keys to be ordered separately（see page 9）

Contact Blocks	Min．actuating force	$15 \mathrm{~N}(30 \mathrm{~N} \Theta)$
Weight	80 g	
	Operating diagram	Page 71

Z11（1N0＋1NC）	SP•K10211	SP•K80Z11
X11（1NO＋1NC）	SP•K10X11	SP•K80X11
Y11（1NO＋1NC）	SP•K10Y11	SP•K80Y11
W02（2NC）	SP•K10W02	SP•K80W02
Z02（2NC）	SP•K10Z02	SP•K80Z02
X12P（1NO＋2NC）	SP－K10X12P	SP•K80X12P
X21P（2NO＋1NC）	SP•K10X21P	SP•K80X21P
W03P（3NC）	SP•K10W03P	SP•K80W03P

Electrical connection： Replace the symbol＂•＂with the number of the thread desired 1：Cable gland PG 13.5 2：Cable gland $1 / 2^{\prime \prime}$ NPT （with adapter） 3：Cable gland PG 11 4：Cable gland M16 x 1，5 5：Cable gland M20 x 1，5 Operating keys to be ordered separately（see page 9） Contact Blocks	K10 Adjustable head 90° （replaces K20）	
Z11（1N0＋1NC）	SDP•K10Z11	SDP•K80Z11
X11（1NO＋1NC）	SDP•K10X11	SDP•K80X11
Y11（1NO＋1NC）	SDP•K10Y11	SDP•K80Y11
W02（2NC）	SDP•K10W02	SDP•K80W02
Z02（2NC）	SDP•K10Z02	SDP•K80Z02
X12P（1NO＋2NC）	SDP•K10X12P	SDP•K80X12P
X21P（2NO＋1NC）	SDP•K10X21P	SDP•K80X21P
W03P（3NC）	SDP•K10W03P	SDP•K80W03P

SM／SDM

Metal casing－IP66
Electrical connection：
Replace the symbol＂•＂with the number of the thread desired 1：Cable gland PG 13.5
2：Cable gland $1 / 2^{\prime \prime}$ NPT （with adapter）
3：Cable gland PG 11
4：Cable gland M16 x 1，5
5：Cable gland M20 $\times 1,5$
7：M12 5 poles connector
8：M12 8 poles connector

Operating keys to be ordered separately（see page 9）

| | Min．actuating force $15 \mathrm{~N}(30 \mathrm{~N} \Theta)$
 Contact Blocks Weight
 Operating diagram 175 g
 Page 71 |
| :--- | :--- | :--- |

K10 Adjustable head 90° （replaces K20）	K80 Fully turnable （replaces K120）
Min．actuating force $\quad 15 \mathrm{~N}(30 \mathrm{~N} \Theta)$	Min．actuating force $\quad 15 \mathrm{~N}(30 \mathrm{~N} \Theta)$
Weight 175 g	Weight 185 g
Operating diagram Page 71	Operating diagram Page 71

Z11	$(1 N 0+1 N C)$	SM•K10Z11
X11	（1NO＋1N）	SM•K10X11
Y11	（1NO＋1NC）	SM•K10Y11

Safety Limit Switches SBP／SFP／SBM／SCM＿K

Key operated

Electrical connection： Replace the symbol＂•＂with the number of the thread desired 1：Cable gland PG 13.5 2：Cable gland $1 / 2$＂NPT 5：Cable gland M20 x 1，5 Operating keys to be ordered separately（see page 9）	K3000 Adjustable head 90°	K5000 Adjustable head 90°
Z11（1NO＋1NC）	SBP•K3000Z11	SFP5K5000Z11
X11（1NO＋1NC）	SBP•K3000X11	SFP5K5000X11
Y11（1NO＋1NC）	SBP•K3000Y11	SFP5K5000Y11
W02（2NC）	SBP•K3000W02	SFP5K5000W02
Z02（2NC）	SBP•K3000Z02	SFP5K5000Z02
X12（1NO＋2NC）	SBP•K3000X12	SFP5K5000X12P
X21（2NO＋1NC）	SBP•K3000X21	SFP5K5000X21P
W03（3NC）	SBP•K3000W03	SFP5K5000W03P

Safety Limit Switches

Accessories

CСロM三•
Operating keys to he ordered separately］
For operating head models K10 and K80（dimensions in mm．）

For operating head models K3000，K4000，K5000（dimensions in mm．）

Minimum values［mm］

Electromagnetic safety devices with separate actuator

Approvals：UL 508 ／EN 60947－5－1

Coil power supply
－024： $24 \mathrm{Vac} / \mathrm{dc}$
－120： $120 \mathrm{Vac} / \mathrm{dc}$
－230： $230 \mathrm{Vac} / \mathrm{dc}$

Cable entry
－5： $3 \times(\mathrm{M} 20 \times 1)$
－M：M12 connector， 12 poles

$$
024 / 120 / 230^{\circ}
$$

$$
\text { FA } 1 / 2 / 3
$$

Auxiliary contacts
－FA1：3NC＋1NO
－FA2：2NC＋2NO
－FA3：1NO＋3NC

CСのM三•
Electromagnetic safety devices with separate actuator
Head orientation：
Replace the symbol＂\bullet＂with
the number of the orientation
desired
1： 0° standard
2： 90° right
3： 180° right
4： 270° rigt
Operating keys to be ordered
separately（see page 15） separately（see page 15）

FEP－E Electrical interlock

FA1	$(3 N C+1 N A)$	FEP5KP•FA1－024M	FEP5KP•FA1－024E
		FEP5KP•FA1－120M	FEP5KP•FA1－120E
FA2	$(2 N A+2 N C)$	FEP5KP•FA1－230M	FEP5KP•FA1－230E
		FEP5KP•FA2－024M	FEP5KP•FA2－024E
FA3	（1NA＋3NC $)$	FEP5KP•FA2－120M	FEP5KP•FA2－120E
		FEP5KP•FA2－230M	FEP5KP•FA2－230E
		FEP5KP•FA3－024M	FEP5KP•FA3－024E

Contact elements definition

| Contact identification |
| :--- | :--- | :--- |

＊ATTENTION：in case of lack of voltage the device allows immediate access to the protected area．

Electromagnetic safety devices with separate actuator

Head orientation
－1：front
2 ．．．4：turn $90^{\circ}-180^{\circ}-270^{\circ}$

024

Electromagnetic Safety Devices

LED－FEP
CとのM戸の1
Electromagnetic safety devices with separate actuator
Head orientation：
Replace the symbol＂•＂with
the number of the orientation
desired
1： 0° standard
2： 90° right
3： 180° right
4： 270° rigt

Operating keys to be ordered
separately（see page 15） separately（see page 15）

FEP－E Electrical interlock

Dimensions

FL1	$(3 N C+1 N A)$	FEP5KP•FL1－024M	FEP5KP•FL1－024E
FL2	$(2 N A+2 N C)$	FEP5KP•FL2－024M	FEP5KP•FL2－024E

Wiring diagram of the version with M12 connector	$\begin{aligned} & 1 \rightarrow 21 \\ & 2 \rightarrow+24 \mathrm{Vdc} \\ & 3 \rightarrow 41 \\ & 4 \rightarrow 22 \\ & 5 \rightarrow 24 \mathrm{Vdc} \text { output for } \\ & \text { key inserted } \\ & 6 \rightarrow 42 \\ & 7 \rightarrow \text { GND } \\ & 8 \rightarrow+24 \mathrm{Vdc} \text { solenoid } \\ & \text { command input } \end{aligned}$

Contact elements definition

Contact identification	Type	Mechanical interlock			Electrical interlock＊		
	Actuator	Inserted and locked	Inserted and unlocked	Not inserted	Inserted and locked	Inserted and unlocked	Not inserted
	Solenoid	Not excited	Excited	－	Excited	Not excited	－
Contact elements	Actuation						
FL1 1 contact moved by actuator 2 contacts moved by solenoid	Actuator Solenoid Solenoid	212	(122		an	(122	$\begin{gathered} 1122 \\ \\ 21 \sim \end{gathered}$
FL2 1 contact moved by actuator $+$ 2 contacts moved by solenoid	Actuator Solenoid Solenoid			+13	Clen	Clle	Clis

＊ATTENTION：in case of lack of voltage the device allows immediate access to the protected area．

For operating head model KP（dimensions in mm．）

Electromaynetic Safety Devices－Accessories
8 poles PVC cable with M12 female Connector

Electromagnetic safety devices with separate actuator - Description

Applications

This device is useful for guarantee the safety of the operator in case of machines where the hazardous conditions remains for a while time after the generation of the stop signal, because of the mechanical inertia of moving parts, components under pressure or with high temperatures. This device, when used individually, is not suitable for applications in machines where the operator can enter inside the protected area with his whole body, because of the possibility of accidental closing of the protection fences after the operator entry. In order to test the proper operations, verify the correct insertion of the actuator in the operating head and start the machine by closing the protection. In this conditions must be impossible to open the protection. With the machine stopped and disconnected protection, must be impossible to start the machine.

Safety warnings

Safety switches perform a human protection function. The wrong installation can cause serious danger situations, as well as the manumission of the device and of the entire safety system. The device must never be evaded or manumitted in every way. To prevent easy tampering, we recommend to install the device in a place difficult to access by unauthorized personnel, by using physical impediments or tricks to make any tampering more difficult.

M MECHANICAL interlock

- Actuator locked when the solenoid is not activated.
- Retention force at locked actuator 1200 N.
- The release is possible by supplying the device.
- Green LED when locked.

02 SAFETY SITUATION ex: turn off machinery, end of inertia

E ELECTRICAL interlock

- Actuator locked when the solenoid is activated.
- Retention force at locked actuator 1200 N .
- The release is possible by switching off the power supply.
- ATTENTION! in case of lack of voltage, the device allows immediate access to the protected area.
- Green LED when locked.

СロМミص।

Electromagnetic safety devices with separate actuator - Technical Data

		FEP Series
Standards	IEC 60947-1, EN 60947-5-1	
		UNI EN ISO 14119, EN 60204

Electromagnetic safety devices with separate actuator－Technical Data

Technical data approved by IMQ	
Standards	Devices conform with international IEC 60947－5－1 and European EN 60947－5－1 standards
Degree of protection	IP 65
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	250 V （pollution degree 3）
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	2.5 kV
Conventional free air thermal current $\mathrm{I}_{\text {th }}$	10 A
Short－circuit protection－gG（gl）type fuses	10A
Rated operational current	
	10 A
$230 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	4 A
$\underline{\mathbf{I}_{\mathbf{e}} / \mathrm{DC}-13} 24 \mathrm{~V}$－d．c．	4A

Technical data approved by UL

| Standards \quad Devices conform with UL 508 |
| :--- | :---: |
| Utilization categories \quad A300，Q300／Class II | Operating ambient temp．： $40^{\circ} \mathrm{C}$－Type 1 encl．

For the complete list of approved products，contact our technical department．

Implementation

Operating head orientation
Head not removable by the user．
The head can be rotated in factory each 90° ．
Key adjustment

Electromagnetic safety devices with separate actuator RFID coded

Approvals：UL 508 ／EN 60947－5－1
（ CH UsFC

CB Certificate N：DK82445－A1－UL

29R
Adjustable joint key factory paired

Electromagnetic safety devices with separate actuator RFID coded - Description

Applications

This device is useful for guarantee the safety of the operator in case of machines where the hazardous conditions remains for a while time after the generation of the stop signal, because of the mechanical inertia of moving parts, components under pressure or with high temperatures. This device, when used individually, is not suitable for applications in machines where the operator can enter inside the protected area with his whole body, because of the possibility of accidental closing of the protection fences after the operator entry. In order to test the proper operations, verify the correct insertion of the actuator in the operating head and start the machine by closing the protection. In this conditions must be impossible to open the protection. With the machine stopped and disconnected protection, must be impossible to start the machine. The FEP-RFID device is supplied with a coded actuator with RFID technology. The actuator supplied has been coupled to the device by the manufacturer, so it is ready to be used. The actuator to use is univocal, it is possible to couple other devices, but each new actuator coupled replaces the previous one. The actuating head cannot be disassembled by the user, so we recommend choosing the right one before buying the product. The actuator supplied is a high coding level actuator according to standard EN ISO 14119, so the measures against any easy bypass strategy for low coding level devices are not necessary.

Safety warnings

Safety switches perform a human protection function. The wrong installation can cause serious danger situations, as well as the manumission of the device and of the entire safety system. The device must never be evaded or manumitted in every way. To prevent easy tampering, we recommend to install the device in a place difficult to access by unauthorized personnel, by using physical impediments or tricks to make any tampering more difficult.

M mechanical interlock

- Actuator locked when the solenoid is not activated.
- Retention force at locked actuator 1200 N .
- The release is possible by supplying the device.

SAFETY SITUATION ex: turn off machinery, end of inertia

E ELECTRICAL interlock

- Actuator locked when the solenoid is activated.
- Retention force at locked actuator 1200 N .
- The release is possible by switching off the power supply.
- ATTENTION! in case of lack of voltage, the device allows immediate access to the protected area.

Electromagnetic Safety Devices

Electromagnetic safety devices with separate actuator RFID coded－Technical Data

	FEP RFID Series
Standards	IEC 60947－1，EN 60947－5－1 UNI EN ISO 14119，EN 60204，FCC Part 15
Certifications－Approvals	UL－FCC
Air temperature near the device	
－during operation ${ }^{\circ} \mathrm{C}$	$-20 \ldots+55$
－for storage ${ }^{\circ} \mathrm{C}$	$-30 \ldots+80$
Mounting positions	Head not removable by the user
Protection against electrical shocks（according to IEC 61140）	Class II
Degree of protection（according to IEC 60529 and EN 60529）	IP 65
Electrical Data－Auxiliary Contacts	
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ －according to IEC 60947－1 and EN 60947－1 －according to UL 508	250 V （pollution degree 3） A 300, Q 300
Rated impulsive withstand voltage $\mathrm{U}_{\mathrm{imp}}$ （according to IEC 60947－1 and EN 60947－1）	2.5
Conventional free air thermal current $\mathrm{I}_{\text {th }}$ （according to IEC 60947－5－1）$\theta<40^{\circ} \mathrm{C}$	10
Short－circuit protection $\mathbf{U}_{\mathbf{e}}<500 \mathrm{~V}$ a．c．$-\mathrm{gG}(\mathrm{gl})$ type fuses	10
Rated operational current $\mathbf{I}_{\mathbf{e}} /$ AC－15（according to IEC $\left.60947-5-1\right)$ $24 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A $230 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A	$\begin{gathered} 10 \\ 4 \end{gathered}$
$\mathbf{l e}$／DC－13（according to IEC 60947－5－1） 24 V －d．c． A	4
Resistance between contacts $\mathrm{m} \Omega$	25
Connecting terminals	M3 screw with cable clamp
Connecting capacity $102 \times \mathrm{mm}^{2}$	0．34．．． 1.5
Terminal marking	according to IEC 60947－5－1
Electrical Data－Power Supply	
Rated operating voltage Ue Vdc	24
Power supply tolerance	＋／－10\％
Maximum design current A	0.5
Rated insulation voltage Ui V	32
Rated impulse voltage kV	1.5
Connection cable nominal area mm^{2}	$0.14 \ldots 1.5$
Linking terminals	M2 screw terminals
RFID sensor features	
Switching distance mm	3
Release distance guaranteed with locked actuator mm	22
Release distance guaranteed with unlocked actuator mm	4.5
Switching distance guaranteed mm	2.5
Maximum switching frequency Hz	1
Sensor reading time	1
Signalling Led	
Led PWR	Power Supply indication
Led LOCK	Lock status
Led KEY	Actuator status
Mechanical Data	
Max switching frequency cycles／ h	600
Max actuation speed $\mathrm{m} / \mathrm{min}$	20
Mechanical durability million of operations	1
Safety Data	
B10d million of operations	2
Maximum period of use years	20
SIL level according to EN 62061	For applications up to SIL3
PL level according to EN ISO 13849－1	For applications up to PLe
Type of interlock according to EN ISO 14119	Type 4
Coding level according to EN 14119	High
Type of emergency release	Manual

Electromagnetic safety devices with separate actuator RFID coded－Technical Data

Technical data approved by UL

Standards	Devices conform with UL 508
Utilization categories	A300，Q300

Use $60 / 75^{\circ} \mathrm{C}$ copper（Cu）conductor only．Wire rages 14－18 AWG stranded or solid．
The terminal tightening torque of 7.1 lbs in／ 0.8 Nm ．Suitable for conduit connection only with use of adapter sleeve optionally provided or recommended by the manufacturer．
Operating ambient temp．： $40^{\circ} \mathrm{C}$－Type 1 encl．
FCC Recommendations for USA market
This device complies with Part 15 of the FCC Rules．Operation is subject to the following two conditions： （1）this device may not cause harmful interference，and（2）this device must accept any interference received，including interference that may cause undesired operation．
No changes shall be made to the equipment without the manufacturer＇s permission as this may void the user＇s authority to operate the equipment．
For the complete list of approved products，contact our technical department．

Operating head orientation

Head not removable by the user． The head can be rotated in factory each 90° ．

10° standard
290° right
3180° right
4270° right

Implementation

Application example with safey module Series MS1A31

Product working logic

Wiring diagram of the device

Wiring diagram of the version with M12 connector

Technical data of the version with 8－pole M12 connector	
Insulation voltage Ui	30 Vdc
Impulse voltage Uimp	0.8 kV
Operating current Contacts 21－22 and 41－42	$2 \mathrm{~A}(24 \mathrm{Vdc})$
Thread	$\mathrm{M} 12 \times 1$
Tightening torque	0.6 Nm

Electromagnetic Safety Devices

Electromagnetic safety devices with separate actuator RFID coded

Head orientation:
Replace the symbol "•" with the number of the orientation desired
1: 0° standard
2: 90° right
3: 180° right
4: 270° rigt
Each device is supplied with its paired operating key.

FR3 (2NC safety+1NC signalling)

FEP5KR•FR3-024E
Operating conditions and Led diagnostics

Led ON - ○ Led OFF - \star Led Flashing

Operating key

For operating head model KR（dimensions in mm．）

Actuator pairing

（1）Open the device cover（2）Give the power supply as specified on this document（3）Wait 10 seconds to allow the initialization procedure of the device（4）Insert the new actuator inside the operating head
（5）Push with a tool the button below the hole visible on the superior part of the device，to the right of signaling LED（6）Wait for the green KEY LED to flashing（7）if the LED KEY remains green the key is correctly recognized，otherwise refer to the problem solving section of this manual．

Minimum values［mm］

Actuator adjustment

Insertion depth H	30 mm
Insertion radius R1	800 mm
Insertion radius R2	600 mm

MIH－code

Crea il tuo codice MIH INTERLOCKING KIT
 Create your MIH INTERLOCKING KIT code

Chisve 29月 accopplata in fabbrica／Key 29月 factory paired

MIH INTERLOCKING KIT：comè composto？
MIH INTERLOCKING KIT：how it is made？

MIH－main features

01 adattabilita＇Flexibility

La maniglia di interblocco MiH è adattabile a qualsiasi tipologia di riparo usato，anche in presenza di profili di differente spessore． Asole e fori di fissaggio multipli rendono le piastre pienamente regolabili，garantendo compatibilita anche con soluzioni altamente personalizzate．
La possibilità di regolazione su tre assi permette di adattarsi ad ogni situazione，raggiungendo una piena fluidità di utilizzo． La maniglia è installabile con qualsiasi dispositivo di interblocco con guardia serie FEP，oltre che con ifinecorsa ad attuatore separato prodotti da COMEPI．

MiH Interlocks Handle can be fit to all types of used safety gate，also with profile of different thickness．
Slots and multiple fouing holes make bases full settings，ensuring compatibility also with customized solution．
The possibility of setting on three axes allows it to fit everything，reaching full fluidity of use．
The handle can be installed with every interlocking with guard FEP series，as well as with limit switches with separate actuator manufactured by COMEPL．

02 semplicita／EaSyto use

Alla robustezza della maniglia MIH fa certamente controparte la sua semplicita dil installazione．
Il dispositivo è fornito con tutte le viti ed accessori necessari per montare correttamente la maniglia sul riparo da controllare．
Il perno di centraggio garantisce precisione di utilizzo e sicurezza in caso di presenza umana allinterno dell＇area da proteggere， previo utilizzo dell＇apposito lucchetto fornito col dispositivo．
La connessione tramite connettore M12 del dispositivo di interblocco permette uninstallazione ancora piá facile ed immediata．
Even though handle is strong it is also easy to install．
The devise has all the screws and accessories needed for assemble correctly handle on safety gate．
The bolt ensures precision during the use and safety in case of human presence inside the protected area，only if the lock was used．
Thanks to the connection thought M12 connect of interlocking device，the installation is simple and fast，

03 ROBUSTEZZA／STRENGTH

La maniglia MIH è un prodotto solido e robusto，progettato per resistere alle plù alte sollecitazioni meccaniche．
Le plastre usate，di spessore 4 mm ，garantiscono piena tenuta e solidita，anche di fronte a grosse sollecitazioni applicate sul riparo in stato di blocco．
I materlali ed I trattamenti utilizzati garantiscono un＇ottima resistenza alla corrosione，rendendo fa maniglia adatta alf＇utilizzo in svariati ambiti applicativi．
La presenza dei grani a sfera rende possibile regolare，in condizione di riparo sbloccato，la forza di apertura del riparo da 20 a 140 N ．
MiH Handle is a solid and strong product，designed to withstand mechanical stress．
The bases used，with 4 mm of thickness，ensuring very good corrosion strength，making handle suitable for use in the most of applications．
Grub screw with ball make possible the regulation，if the repalr was unlocked，of the extraction force（from 20 to 140 N ）．

04 SOLUZIONE PRONTA ALL＇USO／READY TO USE SOLUTION

Per rendere il prodotto completo，COMEPI rende disponibili diversi kit di interblocco comprendenti la maniglia MIH ed i dispositivi serie FER In questo modo e possibile，usando un unico codice di ordinazione，ottenere un kit pronto all＇usa．
L＇aggiunta a catalogo di accessori e prodotti affini，partendo dai cavi di connessione fino ai moduli di sicurezza，rende possibile creare sistemi personalizzati e velocemente disponibill all＇utilizzatore．

To provide a complete product，COMEPI make available different types of interlocking kit including MIH handle and FEP series devices． In this way it is possible，using a single code of order，you will have a kit ready to use．
Related products，like connecting cable and safety modules，make possible to create customized systems，quickly available to the consumer．

MIH - main features

Principio di funzionamento / Operating features

1. Riparo aperto e dispositivo di interblocco FEP pronto alluso
/ Safety gate and Interlocking device FEP ready to use

2. In presenza del lucchetto il perno di centraggio viene bloccato. non rendendo possibile Fuso del dispositivo FEP
/ With padlock, the bolt is locked, so the FEP device won't be use

3. Operatore allinterno dell area protetta: applicazione del lucchetto sul montante
I Operator inside the protective-areax application of padiock on uppercut

4. Riparo chiuso e lucchetto non inseritoc: I'azionatore è correttamente inserito nel dispositivo FEP pronto all uso
/ Salety gate closed and padlock not used actuator correctly fitted in FEP device

Elemento di centraggio rotabile / Rolling centering element

Maniglia－Serie MIH／Safety Handle－MIH Series

Maniglia per interblocco in metallo，disponibile in tre diverse versioni．
MUHOI：configurazione completa
MIH102 con piastra 18 senza piega
MHH03：senza plastra 18 per fussaggio diretto al riparo
Metal interlocking handle，avallable in three different types．
MiH01：complete confoguration
MiH02：with 18 base，without bent
MIH03：without 18 base for direct fixing to the shelter

Finecorsa elettromagnetico di interblocco－Serie FEP
／Electromagnetic Interlocking limit switch－FEP Series

> FEP-PFID - Versione con codifica RFID delliattuatore FEP－LED－Versione standard con segnalazione LED FEP－Versione standard puramente elettromeccanica
Tutti I dispositiMi sono disponibitil in versione pre－cablata con connettore M12． II relativo axionatore e gia incluso ordinando il kit completo MIH＋FEP

FEP－RFID－RFID coded actuator version
FEP－LED－standard version with Led signalling
FEP－a totally electromagnetic standard version
All devices are available in pre－wired version with M12 connection
By ordering the Complete MIH＋FEP kit，the actuator is included．

MIH－Dimensions

Safety Hinges

Complementary Mechanical hinges

Contact blocks
Type：double break，electrically separated
Approvals：UL 508 ／CSA C22－2 n． 14
C \boldsymbol{C} ，（4）

Safety hinges－Description

Applications

Within the range of safety devices，Comepi has created a new hinge with multiple integrated circuit which can suit all applications where high security is combined with a modern and sophisticate design．Thanks to its small sizes and numerous mounting options and connection（cable／connectors），the device is easily installed on most common aluminium profiles（minimum width 30 mm ．）．Its installation is also facilitated by the integration of a safety switch integrated into a single body， thus avoiding the need to separately install a mechanical hinge and a safety switch connected via a special pin．
The use of stainless steel components and the degree of protection IP67 permit the hinge to be subjected to frequent washing and to be used in environments where cleanliness and hygiene require maximum attention．The Comepi hinge was developed and manufactured according to the rules set out in IEC international publications and to applicable EN European Standards；the use of a redundant system and a proper configuration allows to obtain a safety system of machinery up to SIL 3 or PLe according to EN ISO 13849－1．

Description

Both the self－extinguishing body of the hinge and the rotation pin are made of technopolymer with high－rigidity capable of resisting to solvents，oils，greases and various chemical agents．The internal switch is composed of 4 slow action double break contacts．The positive opening（according to IEC EN 60947－5－1）is guaranteed on all NC contacts．All the circuits have a low contact resistance thanks to the self－cleaning action of the silver pastes．
Each hinge is supplied with the following kit：
－$n^{\circ} 4$ technopolymer covers（to avoid free access to screws）：
－ $\mathrm{n}^{\circ} 4$ technopolymer bushings（for hexagon socket or nut M6）．
－$n^{\circ} 2$ thermoplastic elastomer safety plugs to guarantee IP67 protection degree．

Other versions of cable and electrical contacts are available on request：contact our sales department．

Safety hinges－Technical Data

	SPH Series
Standards	IEC 60947－5－1，EN 60947－5－1 UNI EN ISO 14119
Certifications－Approvals	UL－IMQ－EAC－CCC
Air temperature near the device	
－during operation ${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$
－for storage ${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$
Mounting positions	All positions are authorised
Protection against electrical shocks（acc．to IEC 536）	Class II
Degree of protection（according to IEC 529 and EN 60 529）	IP 67
Electrical Data	
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ －according to IEC 947－1 and EN 60－947－1 －according to UL 508 and CSA C22－2 $\mathrm{n}^{\circ} 14$	400 V （degree of pollution 3）（ 24 V for M12 connector） C 300，Q 300 （class II for M12 connector）
Rated impulse withstand voltage $\mathbf{U}_{\text {imp }}$ （according to IEC 947－1 and EN 60 947－1）	4 （2，5 for M12 connector）
Conventional free air thermal current $\mathrm{I}_{\text {th }}$ （according to IEC 947－5－1）$\theta<40^{\circ} \mathrm{C}$	4 （2，5 for M12 connector）
Short－circuit protection $\underline{\mathbf{U}}_{\mathbf{e}}<500 \mathrm{~V} \text { a.c. }-\mathrm{gG}(\mathrm{gl}) \text { type fuses }$	4
Rated operational current	
Ie $/$ AC－15（according to IEC 947－5－1） $24 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A $120 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A $250 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A $400 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ A	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
\mathbf{I}／DC－13（according to IEC 947－5－1） 24 V －d．c． A 125 V d．c． A 250 V －d．c． A	$\begin{gathered} 2 \\ 0.4 \\ 0.3 \end{gathered}$
Switching frequency Cycles $/ \mathrm{h}$	1200
Mechanical durability	1 million of operations
$\underline{B 10 d}=2.000 .000$ operations	

Operating diagrams

As shown in the travel diagrams，the angle of action is set at the factory to 5°（opening of the NC contacts，to be verified according to EN294）．
This angle and consequently also angles relating to the closure of the NO contact and positive opening of the NC contacts can be adjusted by the installer；in the case of doors of considerable size，the operating angle can be reduced up to 1° operating with a screwdriver on the adjustment screw．The degree of protection IP67 is then secured by inserting the appropriate safety plug（not removable）in the adjustment hole．
It is recommended to verify the correct operation of the device before starting up the machine and we suggest to repeat the test periodically．

Special executions on request

－Operating angle of the hinge other than from 0° to 180° ，every 15° ，where the system frame／door requires a special execution．
－NC and NO contact blocks setting（up to 4 NC）．
－NO and NC ovelapping contacts．

Safety hinges－Technical Data

Technical data approved by IMQ

Standards	Devices conform with international IEC 60947－5－1 and European EN 60947－5－1 standards
Degree of protection	IP 67
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	400 V （degree of pollution 3）
Rated impulse withstand voltage $\mathbf{U}_{\mathbf{i m p}}$	$4 \mathrm{kV}(2,5 \mathrm{kV}$ for M12 connector）
Conventional free air thermal current $\mathrm{I}_{\mathbf{t h}}$	$4 \mathrm{~A}(2,5 \mathrm{~A}$ for M12 connector）
Short－circuit protection－gG type fuses	4 A
Rated operational current	
$\mathbf{I}_{\mathbf{e}} /$ AC－15	$24 \mathrm{~V}-50 / 60 \mathrm{~Hz}$
	$120 \mathrm{~V}-50 / 60 \mathrm{~Hz}$
	$250 \mathrm{~V}-50 / 60 \mathrm{~Hz}$
	$400 \mathrm{~V}-50 / 60 \mathrm{~Hz}$

Technical data approved by UL

Standards	Devices conform with UL 508
Utilization categories	C300，Q300
Cable＂U－Type＂	$24 \mathrm{~V} / 2 \mathrm{~A} \mathrm{Class} \mathrm{II}$
Connector／Cable＋Connector＂M－Type＂	

For the complete list of approved products，contact our technical department

Implementation

Determination of maximum applicable load

For SPH1 hinges with built－in safety multiple switch，the reference value supplied is the max limit static load （Sa，Sr，S90），since these hinges can be used as safety devices．
Above this value，the material may break，thus prejudicing the hinge functionality．Obviously a suitable factor， according to the importance and safety level of the specific application，must be applied to this value．The load values shown in the tables of the different hinges are the result of tests carried out in our laboratories under controlled temperature and humidity（ $23^{\circ} \mathrm{C}-50 \%$ R．H．），under given conditions of use and for a limited period of time．

The technical designer must use suitable safety fac－ tors（k）according to the type of application and fun－ ction of the SPH1 hinge．

$$
\begin{aligned}
& \mathrm{P}=294 \mathrm{~N}(30 \mathrm{Kg}) \quad \mathrm{D}=0,4 \mathrm{~m} \quad \mathrm{~N}=3 \\
& d_{T}=1,5 \mathrm{~m} \quad \mathrm{~d}_{2}=1 \mathrm{~m} \quad \mathrm{~d}_{1}=0,5 \mathrm{~m} \\
& \mathrm{P}_{1}=196 \mathrm{~N}(20 \mathrm{Kg}) \quad \mathrm{D}_{1}=1,2 \mathrm{~m} \\
& \begin{array}{c}
\frac{490}{3}=163 \cdot k<2100 \\
\frac{[(294 \cdot 0,4)+(196 \cdot 1,2)]}{1,5}=235,2 \cdot k<2800 \\
\frac{[(294 \cdot 0,4)+(196 \cdot 1,2)]}{1,5}=235,2 \cdot k<1300
\end{array}
\end{aligned}
$$

The examples shown here must be considered only as explanatory，since they are not applicable to all the different applications，conditions of use，ways of assembly which can actually take place．
In practice，the technical designer，after applying a suitable safety factor（k）must also test the chosen product to check its suitability．

P weight of the door［ N ］
P1 additional extra load［N］
W width of the door
D distance［metres］between the centre of gravity of the door and the hinge axis．In normal con－ ditions $D=W / 2$
D1 distance［metres］between the hinge axis and the additional extra load application point
N number of hinges
k safety factor
dT sum of the distances［metres］of all the hinges from the hinge of reference $(d=d+d+\ldots+$ $\mathrm{dn})$ ．In case of only two hinge assembled，d is simply the distance between them

Conditions to be checked in order to ensure a correct functioning with two or more hinges
$\frac{(\mathrm{P}+\mathrm{P} 1)}{\mathrm{N}} \cdot \mathrm{k}<\mathrm{Sa}$
$\frac{[(P \cdot D)+(P 1 \cdot D 1)]}{d_{T}} \cdot k<\mathrm{Sr}$
$\underline{[(P \cdot D)+(P 1 \cdot D 1)]} \cdot k<S 90$

Download

Instruction sheet－Safety Hinges
CE declaration

Polymeric casing．IP67
Electrical connection：
Replace the symbol＂•••＂with
the lenght of the cable desired
020：Cable lenght 2 m
050：Cable lenght 5 m

Safety hinges－Accessories
Complementary mechanical hinges
Glass－fibre reinforced technopolymer

Art Description
SPH－FX1 Couple of supports for safety hinges SPH1 series（fixing screws for switch included）

Art．Description
SPH－FX2 Couple of supports for complementary hinges SPH1－COMP1 series（fixing screws for switch included）

The mounting brackets are used in the presence of profiles with slots having a different pitch from the standard pitch of the hinge（ 40 mm ）．

Contact blocks

Type: double break, electrically separated
Approvals: UL 508 / CSA C22-2 n. 14

Hinge mount Safety Limit Switches－Description

Applications

Easy to use，the limit switches with rotative axis or lever offer specific qualities：
－Capability for strong current switching（conventional thermal current 10 A ）．
－Opening of the＂N．C．＂contact（s）for a very small rotation angle： 12° ．
－Contact blocks with dependent action and positive opening operation of the＂N．C．＂normally closed contact（s）（symbol Θ ）．
－Electrically separated contacts．
－Precision on operating positions（consistency）．
－Immunity to electromagnetic disturbances．
These specific features make the limit switches ideal for monitoring and protection of light industrial machines without inertia equipped with angular movement protectors（doors，hinged grids，rotative covers or cases，etc．）．Detection by the rotative axis or by means of a lever．
－Opening of the mobile protector guarantees operator protection by immediately stopping the machine drive．
－These switches are suitable for conformity of the existing installed machine base，as they can be mounted on protection devices already installed．
－They comply with the requirements of European Directives（Low Voltage and Machines Directive）and are conform to European and international standards．

Description

Safety limit switches of SP／SDP series are made of fibre－glass reinforced UL－VO thermoplastic material，and the offer double insulation \square and a degree of protection IP65．Safety limit switches of SM／SDM series are made of zinc alloy（zamack）and have a degree of protection IP66．They are equipped with $1 \mathrm{NO} 0+1 \mathrm{NC}, 2 \mathrm{NC}$ ， $1 \mathrm{NO}+2 \mathrm{NC}, 2 \mathrm{NO}+1 \mathrm{NC}$ or 3 NC contact blocks with positive opening operation of the＂N．C．＂contact（s）．

[^0]
Hinge mount Safety Limit Switches－Technical Data

AC－15－Snap action

AC－15－Slow action

DC－13		Snap action	Slow action
		Power breaking for a durability of 5 million operating cycles	
Voltage	24 V	9.5 W	12 W
Voltage	48 V	6.8 W	9 W
Voltage	110 V	3.6 W	6 W

Hinge mount Safety Limit Switches－Technical Data

Technical data approved by IMQ

Standards	Devices conform with international IEC 60947－5－1 and European EN 60947－5－1 standards
Degree of protection	IP 65 （SP／SDP series），IP 66 （SM／SDM series）
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	500 V （degree of pollution 3）
	（400V for type Z02，X12P，X21P，W03P）
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	6 kV
Conventional free air thermal current $\mathrm{I}_{\text {th }}$	10 A
Short－circuit protection－ gG （gl）type fuses	10 A
Rated operational current	
$\mathrm{I}_{\mathbf{e}} / \mathrm{AC}-15 \quad 24 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	10 A
$400 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	4 A
\mathbf{l}／DC－13 24V－d．c．	6 A
125 V －d．c．	0.55 A
250 V －d．c．	0.4 A

Technical data approved by UL

Standards	Devices conform with UL 508
Contact blocks type Z11，X11，Y11，W02 and Z02 Utilization categories	

Contact blocks type X12P，X21P and W03P
Utilization categories
A300，Q300
Use $60 / 75^{\circ} \mathrm{C}$ copper（Cu）conductor only．Wire rages 14－18 AWG stranded or solid．The terminal tight－ ening torque of 7 lbs －in／ 0.78 Nm ．Suitable for conduit connection only with use of adapter sleeve op－ tionally provided or recommended by the manufacturer．

For the complete list of approved products，contact our technical department

Implementation

Operating head orientation

The head can be rotated each 90° ．
Recommended tightening torque $0,5 \mathrm{Nm}$ （max 0，8 Nm）．

Lever adjustment

The lever of the head model K61 can ber ad－ justed every 10° in order to obtain the maximum flexibility on the working plan． Recommended tightening torque $0,5 \mathrm{Nm}$ （ $\max 0,8 \mathrm{Nm}$ ）．

Instruction sheet－Hinge mounting safety limit switches CE declaration

Polymeric casing -IP65
Electrical connection: Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5
2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 $\times 1,5$
5: Cable gland M20 $\times 1,5$
6: M12 4 poles connector
7: M12 5 poles connector
8: M12 8 poles connector

	Min. actuating torque $\quad 0,12 \mathrm{Nm}(0,60 \mathrm{Nm} \Theta)$
Contact Blocks	Operating diagram Page 71

K72 Stainless steel shaft

Min. actuating torque
Weight
Operating diagram

Z11 (1NO+1NC)	SP•K71211	SP•K72211	SP•K61Z11
$\mathrm{X11}$ (1NO+1NC)	SP•K71X11	SP•K72X11	SP•K61X11
Y11 (1NO+1NC)	SP•K71Y11	SP•K72Y11	SP•K61Y11
W02 (2NC)	SP•K71W02	SP•k72W02	SP•K61W02
Z02 (2NC)	SP•K71Z02	SP•K72Z02	SP•K61Z02
X12P (1NO+2NC)	SP•K71X12P	SP•K72X12P	SP•K61X12P
X21P (2NO+1NC)	SP•K71X21P	SP•K72X21P	SP•K61X21P
W03P (3NC)	SP•K71W03P	SP•K72W03P	SP•K61W03P

Electrical connection:
Replace the symbol "•" with the number of the thread desired
1: Cable gland PG 13.5
2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 $\times 1,5$
5: Cable gland M20 $\times 1,5$

$\overline{711}$
X11 (1NO+1NC
Y11 (1NO+1NC)
W02 (2NC)
Z02 (2NC)
X12P (1NO+2NC)
X21P (2NO+1NC)
W03P (3NC)

K61 Zinc plated steel lever

SDP•K71Z11	SDP•K72Z11	SDP•K61Z11
SDP•K71X11	SDP•K72X11	SDP•K61X11
SDP•K71Y11	SDP•K72Y11	SDP•K61Y11
SDP•K71W02	SDP•K72W02	$S D P \bullet K 61 W 02$
$S D P \bullet K 71 Z 02 ~$	$S D P \bullet K 72 Z 02$	$S D P \bullet K 61 Z 02$
$S D P \bullet K 71 X 12 P$	$S D P \bullet K 72 X 12 P$	$S D P \bullet K 61 X 12 P$
$S D P \bullet K 71 X 21 P$	$S D P \bullet K 72 X 21 P$	$S D P \bullet K 61 X 21 P$
$S D P \bullet K 71 W 03 P$	$S D P \bullet K 72 W 03 P$	$S D P \bullet K 61 W 03 P$

SM/SDM
Metal casing - IP66
Electrical connection: Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5
2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 $\times 1,5$
5: Cable gland M20 $\times 1,5$
7: M12 5 poles connector
8: M12 8 poles connector

K72 Stainless steel shaft	K61 Zinc plated steel lever
Min. actuating torque $\quad 0,12 \mathrm{Nm}(0,60 \mathrm{Nm} \Theta)$	Min. actuating torque $\quad 0,12 \mathrm{Nm}(0,60 \mathrm{Nm} \Theta)$
Weight $\quad 185 \mathrm{~g}$	Weight $\quad 205 \mathrm{~g}$
Operating diagram Page 71	Operating diagram Page 71

211 (1N0+1NC)	SM•K71211	SM•*72211	SM•K61211
X11 ($1 \mathrm{NO}+1 \mathrm{NC}$)	SM•K71X11	SM•K72X11	SM•K61X11
Y11 (1NO+1NC)	SM•K71Y11	SM•K72Y11	SM•K61Y11
W02 (2NC)	SM•K71W02	SM•K72W02	SM•K61W02
Z02 (2NC)	SM•K71Z02	SM•K72Z02	SM•K61Z02
X12P ($1 \mathrm{NO}+2 \mathrm{NC}$)	SM•K71X12P	SM•K72X12P	SM-K61X12P
X21P ($2 \mathrm{NO}+1 \mathrm{NC}$)	SM•K71X21P	SM•K72X21P	SM-K61X21P
W03P (3NC)	SM•K71W03P	SM•K72W03P	SM•K61W03P

Electrical connection:
Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5
2: Cable gland 1/2" NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 x 1,5
5: Cable gland M20 x 1,5

$S D M \bullet K 71 Z 11$	$S D M \bullet K 72 Z 11$	$S D M \bullet K 61 Z 11$
$S D M \bullet K 71 X 11$	$S D M \bullet K 72 X 11$	$S D M \bullet K 61 X 11$
$S D M \bullet K 71 Y 11$	$S D M \bullet K 72 Y 11$	$S D M \bullet K 61 Y 11$
$S D M \bullet K 71 W 02$	$S D M \bullet K 72 W 02$	$S D M \bullet K 61 W 02$
$S D M \bullet K 71 Z 02$	$S D M \bullet K 72 Z 02$	$S D M \bullet K 61 Z 02$
$S D M \bullet K 71 X 12 P$	$S D M \bullet K 72 X 12 P$	$S D M \bullet K 61 X 12 P$
$S D M \bullet K 1 X 21 P$	$S D M \bullet K 72 X 21 P$	$S D M \bullet K 61 X 21 P$
$S D M \bullet K 71 W 03 P$	$S D M \bullet K 72 W 03 P$	$S D M \bullet K 61 W 03 P$

Approvals：UL 508／EN 60947－5－1

Safety Magnetic Target－SMP1 series

Actuation distance 5 mm
SMP1AMG

Safety Magnetic Sensors

Safety Magnetic Target－SMP2 series

Safety Magnetic Sensors

Safety Magnetic Sensors－Description

Applications

Comepi offers a range of safety magnetic sensors SMP series designed to satisfy applications requiring high safety standards．Combined with an appropriate safety module，SMP magnetic sensors guarantee a safety system with Safety Integraty Level（SIL CL）up to SIL 3 （according to EN 62061）and Performance Level up to PLe（according to EN ISO 13849－1）．
－Sealed：immune to dirt
－Wide actuation zone
－Difficult to by－pass as they can be easily hidden（with non－magnetic material）
－Electrical output contacts：2NC，1NO＋1NC or 1NO＋2NC
－Optionally provided with LED indicator
－Intervention from all directions
They comply with the requirements of European Directives（Low Voltage，Machines and Electromagnetic Compatibility）and are conform to European and international standards．

Description

The housing is made of technopolymer and it offers a degree of protection IP67．Integrated cable or M8／M12 connection allow to install these devices in the most varied applications．

Safety Magnetic Sensors－Technical Data

	SMP Series
Temperature range	
－Operation ${ }^{\circ} \mathrm{C}$	$-25 . . .+80$
－Storage ${ }^{\circ} \mathrm{C}$	$-25 \ldots+80$
Mounting positions	All positions are authorised
Degree of protection（according to IEC 60529 and EN 60 529）	IP 67
Pollution degree（according to IEC 60947－5－1）	3
Sil level（Sil CL）（according to EN IEC 62061）	Up to Sil 3 （＊）
Performance level（PL）（according to EN ISO 13849－1）	Up to PLe（＊）
Safety category（according to EN ISO 13849－1）	Up to Cat 4 （＊）
B10d for each channel	20.000 .000 （＊）／ 400.000 （used with max load： $24 \mathrm{~V}-0,25 \mathrm{~A}$ ）
${ }^{*}{ }^{*}$ Connecting a single sensor to a COMEP safety module MS1A31．．．＊．	
Electrical Data	
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$ according to IEC 60947－1 and EN 60947－1	120 Vac（cable connection and cable + M12 4 poles connector） $60 \mathrm{Vac} / 75 \mathrm{Vdc}$（M8 connector） $30 \mathrm{Vac} / 36 \mathrm{Vdc}$（M12 8 poles connector）
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ m kV	6 （1，5 for M8 or M12 connectors）
Conventional free air thermal current Ith （according to IEC 60947－5－1）$\theta<40^{\circ} \mathrm{C}$	0，25
Rated voltage／current	$24 \mathrm{Vac} / \mathrm{dc}-0,25 \mathrm{~A}$（resistive load）
Max resistive load W	6 （external fuse 0，25 A type F）
Electrical durability	1．000．000 operations

Approvals

Standards	EN 60947－1，EN 60947－5－1，EN 60947－5－2，EN 60947－5－3（＊），EN ISO 14119，EN ISO 12100－1，EN ISO 12100－2，EN ISO 13849－1，
	EN IS0 13849－2，EN 60204－1，EN 60529
Directives	2014／35／UE low voltage
	2006／42／CE machinery
	2014／30／UE electromagnetic
Certifications	CE

Safety Maynetic Sensors

Safety Magnetic Sensors - Technical Data
Implementation

Operating features

SMP1－Polymeric housing－IP67

Contact Blocks

1NO＋2NC
1NO＋1NC
2NC with LED signalling
1NO＋2NC with LED signalling
1NO＋1NC with LED signalling

SMP1A02SKL
SMP1A11SKL SMP1A02LKL

SMP1A11LKL

SMP1A02S001M SMP1A12S001M SMP1A11S001M SMP1A02L001M SMP1A12L001M SMP1A11L001M

SMP1A02S001ML SMP1A12S001ML SMP1A11S001ML SMP1A02L001ML SMP1A12L001ML SMP1A11L001ML

Safety Maynetic Sensors

SMP2－Polymeric housing－IP67

Contact Blocks
M8 integrated connector

$1 \mathrm{NO}+2 \mathrm{NC}$
1NO＋1NC
2NC with LED signalling
1NO＋2NC with LED signalling
1NO＋1NC with LED signalling

SMP2A02SKL
SMP2A11SKL
SMP2A02LKL
SMP2A11LKL

SMP2A02S001M
SMP2A12S001M
SMP2A11S001M
SMP2A02L001M
SMP2A12L001M
SMP2A11L001M

SMP2A02S001ML SMP2A12S001ML SMP2A11S001ML SMP2A02L001ML SMP2A12L001ML SMP2A11L001ML

Multifunction Safety modules

Applications

Multifunction safety modules are able to monitor multiple safety functions of industrial machinery，protecting operators from dangerous moving parts of the machine． The COMEPI modules provide a safety－related interruption of a safety circuit．These devices are compliant with the requirements of EN ISO 13849－1，EN 61508， EN62061 and may be used in applications with E－Stops，E－Gates，limit switches，non－contact switches，safety light curtains（ESPE Type4 and Type 2），safety light beams（single beam）and safety mats．

Main Features

COMEPI provides up to 4 Output Signal Switching Devices．The correct opening and closing of the safety function OSSDs is tested automatically． All the modules provide at least 1 auxiliary output．
MS2A22－024 model output actuation delay，can be easily set via the hex－switch，selected from a choice of 15 pre－defined configurations，from 0 to 30 sec． MT2A22－024 include 2 delayed digital outputs and two instantaneous digital outputs．
4 LEDs on the front panel indicate the status and any possible errors during operation．

Electrical connection

Safety modules

Multifunction Safety modules－Technical Data

	MS2－MT2 Series
Standards	EN60947－1，EN60947－5－1，EN61000－6－2，EN61000－4，EN61326－3－1， EN60204－1，EN ISO 13849－1，EN ISO 12100－1，EN ISO 12100－2 EN62061，EN1037，EN60664－1，EN60529
Directives	2014／35／UE low voltage 2006／42／CE machinery 2014／30／UE electromagnetic
Certifications－Approvals	CE－ROHS－UL－TUV
Air temperature near the device	
－during operation ${ }^{\circ} \mathrm{C}$	$0 \ldots+55$
－for storage ${ }^{\circ} \mathrm{C}$	$-25 \ldots+55$
Protection against electrical shocks（acc．to IEC 60536）	Class II
Degree of protection（according to IEC 60529 and EN 60529）	Casing IP5X－Terminal blocks IP20
Pollution degree	3 external， 2 internal
Safety integrity level（Sil CL）（according to IEC 61508，IEC 62061）	Up to Sil 3
Performance level（PL）（according to EN ISO 13849－1）	Up to PLe
Safety category（according to EN ISO 13849－1）	Up to Cat 4
Mechanical durability	10 millions of operations
Electrical durability	100.000 operations
MTTFd	$2403 \mathrm{a}\left(55^{\circ} \mathrm{C}\right) / 1268 \mathrm{a}\left(65^{\circ} \mathrm{C}\right)$
Diagnostic coverage	H
PFHd	$1,89 \mathrm{E}^{-9}\left(55^{\circ} \mathrm{C}\right) / 3,58 \mathrm{E}^{-9}\left(65^{\circ} \mathrm{C}\right)$
Electrical Data	
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$（acc．to IEC／EN 60947－1）	250 V （degree of pollution 3）
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$（acc．to IEC／EN 60947－1）	4 kV
Power supply Rated operating voltage $U_{N}(\pm 15 \%)$ Rated power consumption	24 Vdc （ 10% max residual ripple in DC） max current $\leq 400 \mathrm{~mA}$－max drop voltage $\leq 2 \mathrm{~V}$
Control circuit Protection against short circuits Input max resistance Input max current	Resistance PTC with intervention operating time $>100 \mathrm{~ms}$ ，reset time $>3 \mathrm{~s}-\mathrm{lh}=0,5 \mathrm{~A}$ 50Ω 30 mA
Output circuit Utilization categories（according to EN 60947－1） Max switching voltage Switching current range（per contact） Conventional free air thermal current $l_{\text {th }}$ Max contact resistance	$\begin{gathered} \text { DC } 13, \mathrm{Ue}=24 \mathrm{~V}, \mathrm{le}=6 \mathrm{~A}(6 \text { oper/minute }) \\ 300 \mathrm{Vdc} \end{gathered}$ $\min 10 \mathrm{~mA}-\max 6 \mathrm{~A}$（external protection fuse 6AF type） 6 A （max current sum：64A²） $100 \mathrm{~m} \Omega$

Electromechanical Safety modules

Applications

Safety devices MS series are modules for emergency stop which have been developed for safety applications up to SIL 3 （EN 62061）and up to PLe （EN ISO 13849－1）．They are suitable for the control of limit switches for safety gates and of safety magnetic sensors．
－ 1 or 2 channels input
－Manual／Automatic Start
－Electromechanical outputs with safety relays
－3NO safety contacts＋1NC contact for signalling
－Suitable for use with electromecanic devices（limit switches and safety sensors）and with optical barriers

They comply with the requirements of European Directives（Low Voltage，Machines and Electromagnetic Compatibility）and are conform to European and international standards．

Description

The polymeric housing for DIN rail mounting has a degree of protection IP40（IP20 on terminal blocks）and it has standard dimensions $22.5 \times 114 \mathrm{~mm}$ ．

Safety modules

Electromechanical Safety modules

	MS1Series
Standards	EN60947－1，EN60947－5－1，EN61000－6－2，EN61000－4，EN61326－3－1， EN60204－1，EN ISO 13849－1，EN ISO 12100－1，EN ISO 12100－2 EN62061，EN1037，EN60664－1，EN60529
Directives	2014／35／UE low voltage 2006／42／CE machinery 2014／30／UE electromagnetic
Certifications－Approvals	CE－IMQ
Air temperature near the device －during operation －for storage	$\begin{aligned} & -25 \ldots+55 \\ & -25 \ldots+55 \\ & \hline \end{aligned}$
Protection against electrical shocks（acc．to IEC 60536）	Class II
Degree of protection（according to IEC 60529 and EN 60529）	Casing IP40－Terminal blocks IP20
Pollution degree	3 external， 2 internal
Safety integrity level（Sil CL）（according to EN IEC 62061）	Up to Sil 3
Performance level（PL）（according to EN ISO 13849－1）	Up to PLe
Safety category（according to EN ISO 13849－1）	Up to Cat 4
Mechanical durability	10 millions of operations
Electrical durability	100.000 operations
MTTFd	218 （for $24 \mathrm{Vac} / \mathrm{dc}$ ）／ 147 （for 120 Vac and 230 Vac ）
Diagnostic coverage	H
PFHd	4，58 E^{-10}（for $24 \mathrm{Vac} / \mathrm{dc}$ ）／6，61 E^{-10}（for 120 Vac and 230 Vac ）

Electrical Data

Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$（acc．to IEC／EN 60947－1）	250 V （degree of pollution 3）

Rated impulse withstand voltage $\mathbf{U}_{\mathbf{i m p}}$（acc．to IEC／EN 60947－1）
Power supply
Rated operating voltage $\mathrm{U}_{\mathrm{N}}(\pm 15 \%)$
Rated power consumption
$24 \mathrm{Vac} / \mathrm{dc}$（10\％max residual riple in DC）－ $120 \mathrm{Vac}-230 \mathrm{Vac}$

Control circuit
Protection against short circuits
Input max resistance
Resistance PTC with intervention operating time $>100 \mathrm{~ms}$ ，reset time $>3 \mathrm{~s}-\mathrm{lh}=0,5 \mathrm{~A}$
50Ω
Input max current
30mA

Output circuit

Utilization categories（according to EN 60947－1）
Max switching voltage
Switching current range（per contact） Conventional free air thermal current $l_{\text {th }}$ Max contact resistance
$\mathrm{AC} 15, \mathrm{Ue}=230 \mathrm{~V}, \mathrm{le}=3 \mathrm{~A} / \mathrm{DC} 13, \mathrm{Ue}=24 \mathrm{~V}, \mathrm{le}=6 \mathrm{~A}(6$ oper／minute $)$ $240 \mathrm{Vac} / 300 \mathrm{Vdc}$
min 10 mA －max 6A（external protection fuse 6A F type） 6 A （max current sum：64Á） $100 \mathrm{~m} \Omega$

Example of connection with safety magnetic sensors
 （＊）If between $^{*} 12$ and S 34 it is connected a jumper instead of the button you get the 2 －channel configuration with automatic start．

Safety Limit Switches with rope

SM＿K series（Metal）

K97
Pull wire without reset for simple stop

W03：Simultaneous 3NC

Safety Limit Switches with rope－Description

Applications

Easy to use，the limit switches for safety applications with rope for simple and emergency stop offer specific qualities：
－Capability for strong current switching（conventional thermal current 10 A ）．
－Contact blocks with positive opening operation of the＂N．C．＂normally closed contact（s）（symbol Θ ）．
－Electrically separated contacts．
－Precision on operating positions（consistency）．
－Immunity to electromagnetic disturbances．
The use of the Comepi pull wire safety switches allows you to create perimeter protections of the machines，thus reducing the need to install sever emergency stop stations in different points of the machine．They comply with the requirements of European Directives（Low Voltage and Machines Directive）and are conform to European and international standards．

Description

SM／SDM series are made of zinc alloy（zamack）．SBM／SCM series are realized in aluminium material，therefore they are mechanically more resistant and three times lighter than the ones in zinc alloy．All metal limit switches have a degree of protection IP66．

| Casing |
| :--- | :--- |
| － 30 mm ．width with standardized dimensions acc．to EN 50047 |
| － 50 mm ．width |
| － 40 mm ．width with standardized dimensions acc．to EN 50041 |
| － 60 mm ．width |

Mounting the casing
－ $2 \times$ M4 screws on top part for 30 mm ．width
－ 2 or $4 \times$ M4 screws on top part for 50 mm ．width
－ 2 or $4 \times$ M5 screws on top part for 40 mm ．width
－ 2 x M5 screws on top part for 60 mm ．width

Contact Block：

－Positive opening operation
－Slow action contacts
－Contacts are electrically separated

Connecting terminals：

－Block of 2 contacts：M3．5（＋，－）pozidriv 2 screw
－Block of 3 contacts：M3（＋，－）screw
－Screw head with captive cable clamp
－Markings conform with IEC 60947－1，IEC 60947－5－1 standard

Symbols

Contact block
11： $1 \mathrm{NO}+1 \mathrm{NC}$ contacts
02： 2 NC contacts
12P： $1 \mathrm{NO}+2 \mathrm{NC}$ contacts
21P： $2 \mathrm{NO}+1 \mathrm{NC}$ contacts
03P： 3 NC contacts
Only for SBM，SCM series：
12： $1 \mathrm{NO}+2 \mathrm{NC}$ contacts
21： $2 \mathrm{NO}+1 \mathrm{NC}$ contacts
03： 3 NC contacts
W：Slow action（contact dependent）
X：Slow action non－overlapping late make

СロМЕっ1

Safety Limit Switches with rope - Technical Data

AC-15 - Snap action

AC-15 - Slow action

DC-13		Snap action	Slow action
		Power breaking for a durability of 5 million operating cycles	
Voltage	24 V	9.5 W	12 W
Voltage	48 V	6.8 W	9 W
Voltage	110 V	3.6 W	6 W

Safety Limit Switches with rope - Technical Data

Technical data approved by IMQ

Standards	Devices conform with international IEC 60947-5-1 and European EN 60947-5-1 standards
Degree of protection	IP 66
Rated insulation voltage $\mathrm{U}_{\mathbf{i}}$	500 V (degree of pollution 3)
	(400 V for contacts type Z02, X12P, X21P, W03P)
Rated impulse withstand voltage $\mathbf{U}_{\text {imp }}$	6 kV
Conventional free air thermal current $\mathrm{I}_{\text {th }}$	10 A
Short-circuit protection - gG (gl) type fuses	10 A
Rated operational current	
$\mathrm{I}_{\mathbf{e}} / \mathrm{AC}-15 \quad 24 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	10 A $4 \mathrm{~A}(1,8 \mathrm{~A}$ for contacts type X12
	$6 \mathrm{~A}(2.8 \mathrm{~A}$ for contacts type X12, X21, W03)
$\begin{aligned} & 125 \mathrm{~V} \text { - d.c. } \\ & 250 \mathrm{~V} \text { - d.c. } \\ & \hline \end{aligned}$	0.4 A (0.27A for contacts type X12, X21, W03)

Technical data approved by UL

Implementation

SM/SDM
Pull wire with reset for emergency stop - Metal casing - IP66

Electrical connection: Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5 2: Cable gland $1 / 2$ " NPT (with adapter) 3: Cable gland PG 11 4: Cable gland M16 x 1,5 5: Cable gland M20 x 1,5 7: M12 5 poles connector 8: M12 8 poles connector	K9300 Pull wire with reset for emergency stop	K9800 Pull wire with reset for emergency stop	K9200 Pull wire with reset for emergency stop
Contact Blocks	Min. forces Initial 65 N, Final $85 \mathrm{~N}(95 \mathrm{~N} \Theta)$ Weight 275 g Operating diagram Page 72	Min. forces Initial 60 N, Final $\operatorname{8ON}(90 \mathrm{~N} \Theta)$ Weight 230 g Operating diagram Page 72	Min. forces Initial 65N, Final 85N (95N Θ) Weight 275 g Operating diagram Page 72
X11 (1NO+1NC)	SM•K9300X11	SM•K9800X11	SM•K9200X11
W02 (2NC)	SM•K9300W02	SM•K9800W02	SM•K9200W02
X12P (1NO+2NC)	SM•K9300X12P	SM•K9800X12P	SM•K9200X12P
X21P (2NO+1NC)	SM•K9300X21P	SM•K9800X21P	SM•K9200X21P
W03P (3NC)	SM•K9300W03P	SM•K9800W03P	SM•K9200W03P

Electrical connection:
Replace the symbol "•" with the number of the thread desired
1: Cable gland PG 13.5
2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 $\times 1,5$
5: Cable gland M20 $\times 1,5$

Contact Blocks

X11 (1NO+1NC)
W02 (2NC)
X12P (1NO+2NC)
X21P (2NO+1NC)
W03P (3NC)

$S D M \bullet K 9800 X 11$	$S D M \bullet K 9200 X 11$
$S D M \bullet K 9800 W 02$	$S D M \bullet K 9200 W 02$
$S D M \bullet K 9800 X 12 P$	$S D M \bullet K 9200 X 12 P$
$S D M \bullet K 9800 X 21 P$	$S D M \bullet K 9200 X 21 P$
$S D M \bullet K 9800 W 03 P$	$S D M \bullet K 9200 W 03 P$

SBM/SCM
Pull wire with reset for emergency stop - Metal casing - IP66

Electrical connection: Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5
2: Cable gland $1 / 2^{\prime \prime}$ NPT
5: Cable gland M20 $\times 1,5$

X11 (1NO+1NC)
W02 (2NC)
X12 ($1 \mathrm{NO}+2 \mathrm{NC}$)
X21 (2NO+1NC)
W03 (3NC)

Weight	345 g
Operating diagram	Page 72

Min. forces	Initial 150N, Final 215N $(230 N \Theta)$
Weight	345 g
Operating diagram	Page 72

Weight 345 g
SCM•K9400X11
SCM•K9400W02
SCM•K9400X12
SCM•K9400X21
SCM•K9400W03

Pull wire without reset for simple stop - Metal casing - IP66

Electrical connection: Replace the symbol " \bullet " with the number of the thread desired 1: Cable gland PG 13.5 2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter) 3: Cable gland PG 11 4: Cable gland M16 x 1,5 5: Cable gland M20 $\times 1,5$ 7: M12 5 poles connector 8: M12 8 poles connector Contact Blocks	K96 Pull wire without reset for simple stop	K9000 Pull wire without reset for simple stop
X11 (1N0+1NC)	SM•K96X11	SM•K9000X11
W02 (2NC)	SM•K96W02	SM•K9000W02
X12P (1NO+2NC)	SM•K96X12P	SM•K9000X12P
X21P (2NO+1NC)	SM•K96X21P	SM•K9000X21P
W03P (3NC)	SM•K96W03P	SM•K9000W03P

Electrical connection: Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5
2: Cable gland $1 / 2$ " NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 $\times 1,5$
5: Cable gland M20 x 1,5

X11 (1NO+1NC)
W02 (2NC)
X12P (1NO+2NC)
X21P (2NO+1NC)
W03P (3NC)

[^1]SBM/SCM

Pull wire without reset for simple stop - Metal casing - IP66

Electrical connection: Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5 2: Cable gland $1 / 2^{\prime \prime}$ NPT 5: Cable gland M20 x 1,5 Contact Blocks	K97 Pull wire without reset for simple stop	K9100 Pull wire without reset for simple stop
X11 (1NO+1NC)	SBM•K97X11	SBM•K9100×11
W02 (2NC)	SBM•K97W02	SBM•K9100W02
X12 (1NO+2NC)	SBM•K97X12	SBM•K9100X12
X21 (2NO+1NC)	SBM•K97X21	SBM•K9100X21
W03 (3NC)	SBM•K97W03	SBM•K9100W03

Electrical connection:
Replace the symbol "•" with
the number of the thread desired
1: Cable gland PG 13.5
2: Cable gland 1/2" NPT
5: Cable gland $\mathrm{M} 20 \times 1,5$

Safety Limit Switches with rope - Accessories

Code
Description
SLS-FX3
Stay bolt

Code Description
SLS-M1 Spring for SM, SDM series

Code
Description
SLS-M2

СロМЕー।
Safety Limit Switches with rope

Installation instructions

In order to obtain the correct operation of the device, please follow the following instructions.

1. Install the switch and secure the fixed end of the rope. Apply tension to the extent the green 0-ring is visible and the bottom is flush with the end of the red housing. (Fig. 1).
2. Pull the reset pommel in order to close the safety contacts of the limit switch.
3. The contacts inside the limit switch will change their position whenever the rope is pulled or loose its tension.
4. Check the correct operation of the rope switch before you start the machine and periodically.
Performing the role of worker protection, improper installation or tampering with safety devices can cause serious injury to persons.
The installation must therefore be performed in accordance with local legislation and only by authorized personnel. For any question about CE declaration of conformity or for any information and assistance, please contact our technical department

Safety Limit Switches with reset

Contact blocks

Type: double break, electrically separated
Approvals: UL 508 / CSA C22-2 n. 14

Safety Limit Switches with reset－Description

Applications

Easy to use，the limit switches for safety applications with latch and manual reset offer specific qualities：
－Visible operation（fault memorisation）．
－Capability for strong current switching（conventional thermal current 10 A ）．
－Contact blocks with positive opening operation of the＂N．C．＂normally closed contact（s）（symbol Θ ）．
－Electrically separated contacts．
－Precision on operating positions（consistency）．
－Immunity to electromagnetic disturbances．
These specific features make the limit switches ideal for detection and monitoring of faults in hoisting machines，electric lifts，freight elevators， escalators，conveyor belts，etc．They comply with the requirements of European Directives（Low Voltage and Machines Directives）and are conform to European and international standards．

Description

Limit switches with latch and manual reset are equipped with operating heads with plunger，roller plunger or roller lever，used to detect rectilinear or angular mo－ vements．AP／DP series are made of fibre－glass reinforced UL－V0 thermoplastic material，they offer double insulation \square and a degree of protection IP65． AM／DM series are made of zinc alloy（zamack）and have a degree of protection IP66．Limit switches with latch and manual reset are equipped with 1NO + 1NC，2NC， $1 \mathrm{NO}+2 \mathrm{NC}, 2 \mathrm{NO}+1 \mathrm{NC}$ or 3 NC contact blocks with positive opening operation of the＂N．C．＂contact（s）．After actuating the control device and overshooting the latching point，the N．C．safety contact（s）remain in the open position．Return to the initial operating state takes place by voluntary action on the reset button．

[^2]
Technical Data

AC－15－Snap action

AC－15－Slow action

DC－13	Snap action	Slow action	
		Power breaking for a durability of 5 million operating cycles	
Voltage	24 V	9.5 W	12 W
Voltage	48 V	6.8 W	9 W
Voltage	110 V	3.6 W	6 W

СロM三『।

Technical Data

Technical data approved by IMQ

Standards	Devices conform with international IEC 60947－5－1 and European EN 60947－5－1 standards
Degree of protection	IP 65 （AP／DP series），IP 66 （AM／DM series）
Rated insulation voltage $\mathbf{U}_{\mathbf{i}}$	500 V （degree of pollution 3）
	（400V for type Z02，X12P，X21P，W03P）
Rated impulse withstand voltage $\mathbf{U}_{\text {imp }}$	6 kV
Conventional free air thermal current $\mathrm{I}_{\text {th }}$	10 A
Short－circuit protection－ $\mathrm{gG}(\mathrm{gl})$ type fuses	10 A
Rated operational current	
$\mathrm{I}_{\mathbf{e}} / \mathrm{AC}-15 \quad 24 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	10 A
$400 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	4 A
$\mathbf{l}_{\mathbf{e}} / \mathrm{DC}-13 \mathrm{l}$ 24V－d．c．	6 A
125 V －d．c．	0.55 A
250 V －d．c．	0.4 A

Technical data approved by UL

Standards	Devices conform with UL 508
Contact blocks type Z11，X11，Y11，W02 and Z02	
Utilization categories	

Contact blocks type X12P，X21P and W03P
Utilization categories
A300，Q300
Use $60 / 75^{\circ} \mathrm{C}$ copper（Cu）conductor only．Wire rages 14－18 AWG stranded or solid．The terminal tight－ ening torque of 7 lbs －in／ 0.78 Nm ．Suitable for conduit connection only with use of adapter sleeve op－ tionally provided or recommended by the manufacturer．

For the complete list of approved products，contact our technical department

Implementation

AP_R
Polymeric casing. Polymer head. 30 mm width. 1 cahle inlet - IP65

Electrical connection: Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5 2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter) 3: Cable gland PG 11 4: Cable gland M16 $\times 1,5$ 5: Cable gland M20 $\times 1,5$ 6: M12 4 poles connector 7: M12 5 poles connector 8: M12 8 poles connector	R11 Steel plunger with reset	R13 Steel plunger with nylon roller with reset	R31 Steel plunger with nylon roller with reset
Contact Blocks	Min. actuating force $15 \mathrm{~N}(30 \mathrm{~N} \Theta)$ Weight Operating diagram 90 g Page 70	Min. actuating force $12 \mathrm{~N}(30 \mathrm{~N} \Theta)$ Weight Operating diagram 90 g	Min. a ctuating force $7 \mathrm{~N}(24 \mathrm{~N} \Theta)$ Weight Operating diagram 95 g
Z11 (1NO+1NC)	AP•R11211	AP•R13211	AP•R31211
X11 (1NO+1NC)	AP•R11X11	AP•R13X11	AP•R31X11
Y11 (1NO+1NC)	AP•R11Y11	AP•R13Y11	AP•R31Y11
W02 (2NC)	AP•R11W02	AP•R13W02	AP•R31W02
Z02 (2NC)	AP•R11202	AP•R13Z02	AP•R31Z02
X12P (1NO+2NC)	AP•R11X12P	AP•R13X12P	AP•R31X12P
X21P (2NO+1NC)	AP•R11X21P	AP•R13X21P	AP•R31X21P
W03P (3NC)	AP•R11W03P	AP•R13W03P	AP•R31W03P

Electrical connection:
Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5
2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 $\times 1,5$
5: Cable gland M20 $\times 1,5$ 6: M12 4 poles connector 7: M12 5 poles connector 8: M12 8 poles connector

Z11 (1NO+1NC)
X11 (1NO+1NO)
Y11 (1NO+1NC)
W02 (2NC)
Z02 (2NC)
X12P (1NO+2NC)
X21P (2NO+1NC)
W03P (3NC)

R51 Adjustable lever with nylon roller with reset

$A P \bullet R 32 Z 11$	$A P \bullet R 41 Z 11$	$A P \bullet R 51 Z 11$
$A P \bullet R 32 X 11$	$A P \bullet R 41 X 11$	$A P \bullet R 51 X 11$
$A P \bullet R 32 Y 11$	$A P \bullet R 41 Y 11$	$A P \bullet R 51 Y 11$
$A P \bullet R 32 W 02$	$A P \bullet R 41 W 02$	$A P \bullet R 51 W 02$
$A P \bullet R 32 Z 02$	$A P \bullet R 41 Z 02$	$A P \bullet R 51 Z 02$
$A P \bullet R 32 X 12 P$	$A P \bullet R 41 X 12 P$	$A P \bullet R 51 X 12 P$
$A P \bullet R 32 X 21 P$	$A P \bullet R 41 X 21 P$	$A P \bullet R 51 X 21 P$
$A P \bullet R 32 W 03 P$	$A P \bullet R 41 W 03 P$	$A P \bullet R 51 W 03 P$

Polymeric casing. Polymer head. 50 mm width. 2 cable inlets - IP65

Electrical connection: Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5 2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter) 3: Cable gland PG 11 4: Cable gland M16 x 1,5 5: Cable gland M20 x 1,5	R11 Steel plunger with reset	R13 Steel plunger with nylon roller with reset	R31 Steel plunger with nylon roller with reset
Contact Blocks	Min. actuating force $15 \mathrm{~N}(30 \mathrm{~N} \Theta)$ Weight Operating diagram 1200 g Page 70	Min. actuating force $12 \mathrm{~N}(30 \mathrm{~N} \Theta)$ Weight 120 g Operating diagram Page 70	Min. actuating force $7 \mathrm{~N}(24 \mathrm{~N} \Theta)$ Weight Operating diagram $125 \mathrm{~g})$ Page 70
Z11 (1N0+1NC)	DP•R11211	DP•R13211	DP•R31211
X11 ($1 \mathrm{NO}+1 \mathrm{NC}$)	DP•R11X11	DP•R13X11	DP•R31X11
Y11 (1NO+1NC)	DP•R11Y11	DP•R13Y11	DP•R31Y11
W02 (2NC)	DP•R11W02	DP•R13W02	DP•R31W02
Z02 (2NC)	DP•R11Z02	DP•R13Z02	DP•R31202
X12P (1NO+2NC)	DP•R11X12P	DP•R13×12P	DP•R31X12P
X21P ($2 \mathrm{NO}+1 \mathrm{NC}$)	DP•R11X21P	DP•R13X21P	DP•R31X21P
W03P (3NC)	DP•R11W03P	DP•R13W03P	DP•R31W03P

Electrical connection:
Replace the symbol " \bullet " with the number of the thread desired
1: Cable gland PG 13.5
2: Cable gland 1/2" NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 x 1,5
5: Cable gland M20 x 1,5

5: Cable gland M20 X 1,5 Contact Blocks

Z11 (1NO +1NC)
X11 (1NO+1NC)
Y11 (1NO+1NC)
W02 (2NC)
ZO2 (2NC)
X12P (1NO+2NC)
X21P (2NO+1NC)
W03P (3NC)

R41 Lever with nylon roller with reset

R51 Adjustable lever with nylon roller with reset

$D P \bullet R 38211$	$D P \bullet R 41 Z 11$	$D P \bullet R 51 Z 11$
$D P \bullet R 38 X 11$	$D P \bullet R 41 X 11$	$D P \bullet R 51 X 11$
$D P \bullet R 38 Y 11$	$D P \bullet R 41 Y 11$	$D P \bullet R 51 Y 11$
$D P \bullet R 38 W 02$	$D P \bullet R 41 W 02$	$D P \bullet R 51 W 02$
$D P \bullet R 38 Z 02$	$D P \bullet R 41 Z 02$	$D P \bullet R 51 Z 02$
$D P \bullet R 38 X 12 P$	$D P \bullet R 41 X 12 P$	$D P \bullet R 51 X 12 P$
$D P \bullet R 38 X 21 P$	$D P \bullet R 41 X 21 P$	$D P \bullet R 51 X 21 P$
$D P \bullet R 38 W 03 P$	$D P \bullet R 41 W 03 P$	$D P \bullet R 51 W 03 P$

Metal casing. Polymer head. 30 mm width. 1 cable inlet - IP66
Electrical connection:
Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5
2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 $\times 1,5$
5: Cable gland M20 $\times 1,5$
7: M12 5 poles connector
8: M12 8 poles connector

R13 Steel plunger with nylon roller with reset

Min. actuating force
 Weight
 Operating diagram

$12 \mathrm{~N}(30 \mathrm{~N} \Theta)$
185 g
Page 70

R31 Steel plunger with nylon roller with reset

Min. actuating force
 Win. act

Z11	$(1 N 0+1 N C)$	$A M \bullet R 11 Z 11$	$A M \bullet R 13 Z 11$
X11	$(1 N 0+1 N C)$	$A M \bullet R 11 X 11$	$A M \bullet R 13 X 11$

Electrical connection:
Replace the symbol "•" with the number of the thread desired 1: Cable gland PG 13.5
2: Cable gland $1 / 2^{\prime \prime}$ NPT (with adapter)
3: Cable gland PG 11
4: Cable gland M16 $\times 1,5$
5: Cable gland M20 $\times 1,5$
7: M12 5 poles connector
8: M12 8 poles connector

Z11 (1NO+1NC)
X11 (1NO+1NC)
Y11 (1NO+1NC)
W02 (2NC)
ZO2 (2NC)
X12P (1NO+2NC)
X21P (2NO+1NC)
W03P (3NC)

R51 Adjustable lever with nylon roller with reset

$A M \bullet R 32 Z 11$	$A M \bullet R 41 Z 11$	$A M \bullet R 51 Z 11$
$A M \bullet R 32 X 11$	$A M \bullet R 41 X 11$	$A M \bullet R 51 X 11$
$A M \bullet R 32 Y 11$	$A M \bullet R 41 Y 11$	$A M \bullet R 51 Y 11$
$A M \bullet R 32 W 02$	$A M \bullet R 41 W 02$	$A M \bullet R 51 W 02$
$A M \bullet R 32 Z 02$	$A M \bullet R 41 Z 02$	$A M \bullet R 51 Z 02$
$A M \bullet R 32 X 12 P$	$A M \bullet R 41 X 12 P$	$A M \bullet R 51 X 12 P$
$A M \bullet R 32 X 21 P$	$A M \bullet R 41 X 21 P$	$A M \bullet R 51 X 21 P$
$A M \bullet R 32 W 03 P$	$A M \bullet R 41 W 03 P$	$A M \bullet R 51 W 03 P$

DM
R
C®ロM戸ワ1
Metal casing．Polymer head． 50 mm width． 3 cable inlets－IP66

Electrical connection： Replace the symbol＂•＂with the number of the thread desired 1：Cable gland PG 13.5 2：Cable gland $1 / 2^{\prime \prime}$ NPT （with adapter） 3：Cable gland PG 11 4：Cable gland M16 $\times 1,5$ 5：Cable gland M20 x 1，5	R11 Steel plunger with reset	R13 Steel plunger with nylon roller with reset	R31 Steel plunger with nylon roller with reset
Contact Blocks	Min．actuating force $15 \mathrm{~N}(30 \mathrm{~N} \Theta)$ Weight 245 g Operating diagram Page 70	Min．actuating force $12 \mathrm{~N}(30 \mathrm{~N} \Theta)$ Weight Operating diagram 245 g Page 70	Min．actuating force $7 \mathrm{~N}(24 \mathrm{~N} \Theta)$ Weight 250 g Operating diagram Page 70
Z11（1N0＋1NC）	DM•R11211	DM•R13Z11	DM•R31Z11
X11（1NO＋1NC）	DM•R11X11	DM•R13X11	DM•R31X11
Y11（1NO＋1NC）	DM•R11Y11	DM•R13Y11	DM•R31Y11
W02（2NC）	DM•R11W02	DM•R13W02	DM•R31W02
Z02（2NC）	DM•R11Z02	DM•R13Z02	DM•R31Z02
X12P（1NO＋2NC）	DM•R11X12P	DM•R13X12P	DM•R31X12P
X21P（2NO＋1NC）	DM•R11X21P	DM•R13X21P	DM•R31X21P
W03P（3NC）	DM•R11W03P	DM•R13W03P	DM•R31W03P

Electrical connection：
Replace the symbol＂•＂with the number of the thread desired 1：Cable gland PG 13.5
2：Cable gland $1 / 2^{\prime \prime}$ NPT （with adapter）
3：Cable gland PG 11
4：Cable gland $\mathrm{M} 16 \times 1,5$
5：Cable gland M20 $\times 1,5$

R41 Lever with nylon roller with reset

R41 Lever with nylon roller
with reset
R51 Adjustable lever with nylon roller

Z11（1NO＋ND
X11（1NO＋1NC）
Y11（1NO＋1NC）

W02（2NC）
Z02（2NC）
X12P（1NO＋2NC）
X21P（2NO＋1NC）
W03P（3NC）
R38 Steel plunger with nylon roller
with reset

$D M \bullet R 41 Z 11$	$D M \bullet R 51 Z 11$
$D M \bullet R 41 X 11$	$D M \bullet R 51 X 11$
$D M \bullet R 41 Y 11$	$D M \bullet R 51 Y 11$
$D M \bullet R 41 W 02$	$D M \bullet R 51 W 02$
$D M \bullet R 41 Z 02$	$D M \bullet R 51 Z 02$
$D M \bullet R 41 X 12 P$	$D M \bullet R 51 X 12 P$
$D M \bullet R 41 X 21 P$	$D M \bullet R 51 X 21 P$
$D M \bullet R 41 W 03 P$	$D M \bullet R 51 W 03 P$

General Technical Data, Specifications, Directives and Standards

The Comepi products listed in this catalogue are developed and manufactured according to the rules set out in IEC international publications and EN European standard.

Specifications

- International Specifications

The International Electrotechnical Commission, IEC, which is part of the International Standards Organization, ISO, publishes IEC publications which act as a basis for the world market.

- European Specifications

The European Committee for Electrotechnical Standardisation (CENELEC) publishes EN standards for low voltage industrial apparatus.
These European standards differ very little from IEC international standards and use a similar numbering system. The same is true of national standards. Contradicting national standards are withdrawn.

- Harmonised European Specifications

The European Committees for Standardisation (CEN and CENELEC) publish EN standards relating to safety of machinery.

- Specifications in Canada and the USA

These are equivalent, but differ markedly from IEC, UTE, VDE and BS specifications.
UL Underwriters Laboratories (USA)
CSA Canadian Standards Association (Canada)
Remark concerning the label issued by the UL (USA). Two levels of acceptance between devices must be distinguished.
"Recognized" Authorised to be included in equipment, if the equipment in question has been entirely mounted and wired by qualified personnel. They are not valid for use as "General purpose products" as their possibilities are limited. They bear the mark: $\mathbf{J B}^{\circ}$
"Listed" Authorised to be included in equipment and for separate sale are "General purpose products" components in the USA. They bear the mark: UL

European Directives

The guarantee of free movement of goods within the European Community assumes elimination of any regulatory differences between the member states. European Directives set up common rules that are included in the legislation of each state while contracditory regulations are cancelled.

There are three main directives:

- Low Voltage Directive 2014/35/UE concerning electrical equipment from 50 to 1000 V a.c. and from 75 to 1500 V d.c. This specifies that compliance with the requirements that is sets out is acquired once the equipment conforms to the standards harmonised at European level: EN 60947-1 and EN-60947-5-1 for limit switches.
- Machines Directives - 2006/42/CE defining main safety and health requirements concerning design and manufacture of the machines and other equipment including safety components in European Union countries.
- Electro megnetic Compatibility Directive 2014/30/UE concerning all electrical devices likely to create electromagnetic disturbances.

Signification of CE marking:

CE marking must not be confused with a quality label.
CE marking placed on a product is proof of conformity with the European Devices concerning the product.
CE marking is part of an administrative procedure and guarantees free movement of the product within the European Community.

Standards

- International Standards

IEC 60947-1 Low-voltage switchgear and controlgear - Part 1: General Rules (CEI EN 60947-1).
IEC 60947-5-1 Low-voltage switchgear and controlgear - Part 5: Control circuit devices and switching elements - Section 1: Electromechanical control circuit devices (CEI EN 60947-5-1) - Chapter 3: Special requirements for control switches with positive opening operation.

$$
\begin{array}{ll}
\text { IEC 60204-1 } & \text { Electrical equipment on industrial machines - Part 1: General requirements (CEI EN 60204-1). } \\
\text { IEC 60204-2 } & \text { Electrical equipment on industrial machines - Part 2: Item designation and examples of drawings, diagrams, tables and instructions. } \\
\text { IEC 60529 } & \text { Degrees of protection provided by enclosure (IP code) (CEI EN 60529). }
\end{array}
$$

- European Standards

EN 50041	Low-voltage switchgear and controlgear for industrial use. Controlswitches. Position switches $42,5 \times 80$. Dimensions and characteristics.
EN 50047	Low-voltage switchgear and controlgear for industrial use. Control switches. Position switches 30×55. Dimensions and characteristics.
EN 60947-1	Low-voltage switchgear and controlgear - Part 1: General rules.
EN 60947-5-1	Low-voltage switchgear and controlgear - Part 5-1: Control circuit devices and switching elements - Electromechanical control circuit device
EN 60947-5-5	Low-voltage switchgear and controlgear - Part 5-5: Control circuit devices and switching elements - Electrical emergency stop device with mechanical latching function.

- American Standards

UL 508 Standard for Industrial Control Equipment
C22.2 NO. 14-13 Industrial control equipment.

- Chinese Standards

GB 14048.5 Low-voltage switchgear and controlgear - Part 5: Control circuit devices and switching elements.

General Technical Data，Specifications，Directives and Standards

Double Insulation

Class II materials，according to IEC 536，are designed with double insulation．This measure consists in doubling the functional insulation with an additional layer of insulation so as to eliminate the risk of electric shock and thus not having to protect elsewhere．No conductive part of＂double insulated＂material should be connected to a protective conductor．

Positive Opening Operation Θ

A control switch，with one or more break－contact elements，has a positive opening operation when the switch actuator ensures full contact opening of the break－ contact．For the part of travel that separates the contacts，there must be a positive drive，with no resilient member（e．g．springs），between the moving contacts and the point of the actuator to which the actuating force is applied．
The positive opening operation does not deal with N．O．contacts．
Control switches with positive opening operation may be provided with either snap action or slow action contact elements．To use several contacts on the same control switch with positive opening operation，they must be electrically separated from each other，if not，only one may be used．
Every control switch with positive opening operation must be indelibly marked on the outside with the symbol：Θ ．

Snap Action

Snap action contacts are characterised by a release position that is distinct from the operating position（differential travel）．Snap breaking of moving contacts is independent of the switch actuator＇s speed and contributes to regular electric performance even for slow switch actuator speeds．

Slow Action

Slow action contacts are characterised by a release position that is the same as the operating position．The switch actuator＇s speed directly conditions the travel speed of contacts．

State of rest

Completely closed

Contact shape according to IEC 947－5－1．

Change－over contact elements with 4 terminals must be indelibly marked with the corresponding Za or Zb symbol as in the diagrams below．

Contacts with the same polarity

The 2 moving contacts are electrically separated

Utilization Category

AC－15：switching of electromagnetic loads of electromagnets using an alternating current（ $>72 \mathrm{VA}$ ）．
DC－13：switching of electromagnets using a direct current．

Terminals

Limit switches with metal casings must have a terminal，for a protective conductor，that is placed inside the casing very close to the cable inlet and must be indelibly marked．

Minimum Actuation Force／Torque

The minimum amount of force／torque that is to be applied to the switch actuator to produce a change in contact position．
Minimum Force／Torque to achieve Positive Opening Operation
The minimum amount of force／torque that is to be applied to the switch actuator to ensure positive opening operation of the N．C．contact．

Plastic or Metal Casing - Travel and Operation Diagrams

\mathbf{P}_{0} Free position: position of the switch actuator when no external force is exerted on it.
$\mathbf{P}_{\mathbf{A}}$ Operating position: position of the switch actuator, under the effect of force F1, when the contacts leave their initial free position.
$\mathbf{P}_{\mathbf{P}}$ Positive opening position: position of the switch actuator from which positive opening is ensured.
S_{A} Latching point: point of no return of the switch actuator beyond which the opened status of the NC contacts is maintained. Unlocking will only occur after deliberate action on the reset button.
L Max. travel position: maximum acceptable travel position of the switch actuator.
$\mathbf{P}_{\mathbf{R}}$ Release position: position of the switch actuator when the contacts return to their initial free position. \mathbf{C}_{1} Pre-travel: distance between the free position P_{0} and the operating position P_{A}.
$\mathbf{C}_{\mathbf{p}}$ Positive opening travel: minimum travel of the switch actuator, from the free position, to ensure positive opening operation of the normally closed contact. $\mathbf{C}_{\boldsymbol{A}}$ Latching travel: distance between the free positions P_{0} and the latching point S_{A}.
\mathbf{C}_{2} Over-travel: distance between the operating position P_{A} and the max. travel position L .
\mathbf{C}_{L} Max. travel: distance between the free position P_{0} and the max. travel position L.
\mathbf{C}_{3} Differential travel (C1-C4): travel difference of the switch actuator between the operating position P_{A} and the release position P_{R}.
\mathbf{C}_{4} Release travel: distance between the release position P_{R} and the free position P_{0}.

Diagram for snap action contacts:

Diagram for non-overlapping slow action contacts:

Note: for slow action contacts, $\mathrm{C}_{3}=0, \mathrm{C}_{1-1}=$ pre-travel of contact 21-22, $\mathrm{C}_{1-2}=$ pre-travel of contact 13-14

- Actuation

4 Release
\square Contact closed
\square Contact opened

- Positive opening operation

R Latching point S_{A}

	R11 Steel plunger with reset	R13 Steel plunger with nylon roller with reset	Steel plunger with nylon roller with reset	Steel plunger with nylon roller with reset	R41-R51 Lever with nylon roller with reset
Z11: Snap action 1NO+1NC					
					bety
		$\begin{array}{cccc} \begin{array}{c} \text { 21.22 } \\ 13.14 \\ \hline \end{array} & 5.3 & 8.2 & 9.6 \mathrm{~mm} \\ \hline \end{array}$			
W02: Simultaneous slow action 2NC					
Z02: Snap action 2NC					
X12P: Slow action break before make $1 \mathrm{NO}+2 \mathrm{NC}$					
X21P: Slow action break before make 2NO+1NC					
W03P: Simultaneous slow action 3NC					

ЄСロМ戸戸।
Plastic or Metal Casing－Travel and Operation Diagrams

\mathbf{P}_{0} Free position：position of the switch actuator when no external force is exerted on it．
$\mathbf{P}_{\mathbf{A}}$ Operating position：position of the switch actuator， under the effect of force F1，when the contacts leave their initial free position．
\mathbf{P}_{p} Positive opening position：position of the switch actuator from which positive opening is ensured．
L Max．travel position：maximum acceptable travel position of the switch actuator under the effect of a force F1．
$\mathbf{P}_{\mathbf{R}}$ Release position：position of the switch actuator when the contacts return to their initial free position． \mathbf{C}_{1} Pre－travel：distance between the free position P_{0}
and the operating position P_{A} ．
$\mathbf{C}_{\mathbf{P}}$ Positive opening travel：minimum travel of the switch actuator，from the free position，to ensure posi－ tive opening operation of the normally closed contact． \mathbf{C}_{2} Over－travel：distance between the operating posi－ tion P_{A} and the max．travel position L ．
$\mathbf{C}_{\mathbf{L}}$ Max．travel：distance between the free position P_{0} and the max．travel position L．
\mathbf{C}_{3} Differential travel（C1－C4）：travel difference of the switch actuator between the operating position P_{A} and the release position P_{R} ．
\mathbf{C}_{4} Release travel：distance between the release po－ sition P_{R} and the free position P_{0} ．

Note：for slow action contacts， $\mathrm{C}_{3}=0, \mathrm{C}_{1-1}=$ pre－travel of contact 21－22， $\mathrm{C}_{1-2}=$ pre－travel of contact 13－14
－Actuation
4 Release
\square Contact closed
\square Contact opened
－Positive opening operation

	K10 Adjustable head 90°	K80 Fully turnable head	K3000－K4000 Adjustable head 90°	K5000 Adjustable head 90°	head 90°
Z11：Snap action 1NO＋1NC					
	$5 \operatorname{sit}^{0.21}=\sum_{41}^{2 a}=$		$\frac{15}{6}=40$		$\text { hativiz w } w$
				$6 t^{3}=\frac{3}{4}=\infty$	
W02：Simultaneous slow action 2NC	$\begin{array}{cc} \text { ain an } & 4 \\ \text { an } \end{array}$	$\text { \#in : } 30$	$\begin{array}{ccc} 0.33 & = \\ \text { \#in } & =0 \end{array}$		
Z02：Snap action 2NC					
X12P：Slow action break before make 1NO＋2NC					
X21P：Slow action break before make 2NO＋1NC					
W03P：Simultaneous slow action 3NC					

Plastic or Metal Casing－Travel and Operation Diagrams

\mathbf{P}_{0} Free position：position of the switch actuator when no external force is exerted on it．
0 Starting position：position of the switch actuator， under the effect of force F1．
\mathbf{P}_{p} Positive opening position：position of the switch actuator from which positive opening is ensured．
L Max．travel position：maximum acceptable travel position of the switch actuator．
\mathbf{C}_{0} Ideal travel for pre－tensioning：distance between the free position P_{0} and the starting position 0 ．
\mathbf{C}_{p} Positive opening travel：minimum travel of the switch actuator，from the starting position 0 ，to ensure positive opening operation of the normally closed con－ tact．
$\mathrm{C}_{\mathrm{ES}}, \mathrm{C}_{\mathrm{ES}}$＇Travel for emeregency stop and latching point．
\mathbf{C}_{L} Max．travel：distance between the starting position 0 and the max．travel position L．
C_{L}＇Travel between pre－tensioning position C_{0} and free position P_{0} in case of rope cut．
－Actuation
4 Release
－Contact closed
\square Contact opened
－Positive opening operation
R Latching point S_{A}

			K96 Pull wire without reset for simple stop			K9800 Pull wire with reset for emergency stop	K9200 Pull wire with reset for emergency stop
$\overline{\mathrm{X} 11:}$	Slow action break before make 1NO＋1NC						
W02：	Simultaneous slow action 2NC	${ }_{12}{ }_{11}^{11}\left\|\begin{array}{c} { }^{21} \\ \hdashline---4 \end{array}{ }_{2}\right\|^{2}$				$a^{\prime \prime} \quad \text { nin }$	
$\overline{\mathrm{X12P}}$	Slow action break before make 1NO $+2 N C$				ilisine:		
$\overline{\mathrm{X} 21 \mathrm{P}:}$	Slow action break before make 2NO +1 NC		$\ln _{4}^{2} \frac{20}{11}=$		通		直田：
W03P：	Simultaneous slow action 3NC		$\text { ail } \frac{4}{\text { an }}$			$\text { a" } \frac{n+1}{31}=1$	

			K97 Pull wire without reset for simple stop		K9500 Pull wire with reset for emergency stop	K9900 Pull wire with reset for emergency stop	K9400 Pull wire with reset for emergency stop
$\overline{\mathrm{X} 11:}$	Slow action break before make 1NO +1 NC	$\left.\left.\left.{ }_{14}^{13}\right\|^{13}\right\|^{21}{ }^{21}\right\|_{\Theta}$	捄-	"10	$\ln ^{\prime}+\sin +\sin =$	$\mathrm{A}^{\prime \prime}$	$\ln ^{\prime}+\sin \cdot \sin =$
W02：	Simultaneous slow action 2NC			$\left\lvert\, \frac{10 \cdot i}{11}\right. ;$			
$\overline{\mathrm{X} 12:}$	Slow action break before make 1NO＋2NC	$\left.\left.{ }_{14}^{13}\| \|_{22}^{21}\right\|_{22}\right\|^{31}-{ }_{32} 4 \mid \Theta$			迸	术	
$\overline{\text { X21: }}$	Slow action break before make 2NO +1 NC			$\sin _{5}^{\prime} \frac{x+2}{17}=$		$\stackrel{*}{11}+\cdots \cdots=$	药
W03：	Simultaneous slow action 3NC	$\left.\left.\left.{ }_{12}^{11}\right\|_{12}\right\|_{22} ^{21}\right\|_{22}-{ }^{31}-\left.{ }_{32} 4\right\|_{\Theta}$		$\text { al } \frac{u-i n}{1+1}=$			

Gomepiall over the world

CとロMミア।

COMEPI srl
23899 Robbiate（Lecco）Italy
Via Novarino 9／L
Tel．＋39 0399906408
Fax＋39 0399906203
www．comepi．it
e－mail：comepi＠comepi．it
Linkedin．

[^0]: ＊In SP．．．and SDP．．．series，the 1／2＂NPT thread is obtained by the use of a plastic adapter（delivered not mounted）．

[^1]: SDM•K9000X11
 SDM•K9000W02
 SDM•K9000X12P
 SDM•K9000X21P
 SDM•K9000W03P

[^2]: ＊In AP．．．and DP．．．series，the $1 / 2$＂NPT thread is obtained by the use of a plastic adapter（delivered not mounted）．

